Product Version of Reciprocal Degree Distance of Graphs
نویسنده
چکیده
In this paper, we present the various upper and lower bounds for the product version of reciprocal degree distance in terms of other graph inavriants. Finally, we obtain the upper bounds for the product version of reciprocal degree distance of the composition, Cartesian product and double of a graph in terms of other graph invariants including the Harary index and Zagreb indices. .
منابع مشابه
Product version of reciprocal degree distance of composite graphs
A {it topological index} of a graph is a real number related to the graph; it does not depend on labeling or pictorial representation of a graph. In this paper, we present the upper bounds for the product version of reciprocal degree distance of the tensor product, join and strong product of two graphs in terms of other graph invariants including the Harary index and Zagreb indices.
متن کاملGeneralized Degree Distance of Strong Product of Graphs
In this paper, the exact formulae for the generalized degree distance, degree distance and reciprocal degree distance of strong product of a connected and the complete multipartite graph with partite sets of sizes m0, m1, . . . , mr&minus1 are obtained. Using the results obtained here, the formulae for the degree distance and reciprocal degree distance of the closed and open fence graphs are co...
متن کاملSharp Upper bounds for Multiplicative Version of Degree Distance and Multiplicative Version of Gutman Index of Some Products of Graphs
In $1994,$ degree distance of a graph was introduced by Dobrynin, Kochetova and Gutman. And Gutman proposed the Gutman index of a graph in $1994.$ In this paper, we introduce the concepts of multiplicative version of degree distance and the multiplicative version of Gutman index of a graph. We find the sharp upper bound for the multiplicative version of degree distance and multiplicative ver...
متن کاملReciprocal Degree Distance of Grassmann Graphs
Recently, Hua et al. defined a new topological index based on degrees and inverse of distances between all pairs of vertices. They named this new graph invariant as reciprocal degree distance as 1 { , } ( ) ( ( ) ( ))[ ( , )] RDD(G) = u v V G d u d v d u v , where the d(u,v) denotes the distance between vertices u and v. In this paper, we compute this topological index for Grassmann graphs.
متن کاملThe Multiplicative Versions of the Reciprocal Degree Distance and Reciprocal Gutman Index of Some Graph Products
In this paper, we provide exact value of the multiplicative version of the reciprocal degree distance and the multiplicative version of the reciprocal Gutman index of Cartesian product of complete graphs. Also, we establish sharp upper bounds for the multiplicative version of the reciprocal degree distance and multiplicative version of the reciprocal Gutman index of strong product of graphs.
متن کامل